Antarctic ice cap formed due to reduced CO2

Published in The Hindu on September 17, 2009

The link between the levels of atmospheric carbon dioxide and Antarctic ice sheets has been established in yet another study. The latest study published online in the journal Nature has found the formation of ice sheets was triggered when the atmospheric carbon dioxide levels fell below a threshold level of 750 parts per million by volume (ppmv). This happened some 34 million years ago during the Eocene-Oligocene transition.

Though geologists have long speculated that the formation of the Antarctic ice-cap was caused by a gradually diminishing of carbon dioxide, the greenhouse gas, concrete proof was not available.

Finding the link between carbon dioxide level in the atmosphere and the ice sheet formation became possible as scientists studied geologically well preserved samples of planktonic foraminifera across the transition.

Foraminifera are microscopic organisms that have carbonate shells.

The scientists from Cardiff University, U.K, University of Bristol, U.K. and Texas A&M University, U.S., used boron isotope-11 analysis of the carbonate shells to understand the link.

The rationale for using boron isotope to understand the palaeo-surface ocean pH is simple.

The relationship

The amount of boron isotope present in the shells increases as the pH of the ocean surface water increases. Changes in pH of the ocean surface water in turn are governed by the carbon dioxide present in the atmosphere.

The pH of the ocean surface water increases (becomes alkaline) when carbon dioxide in the atmosphere reduces. Water becomes acidic when the pH is less than 7 and alkaline when the pH is more than 7. More the acidity, the less will be the growth of carbonate shells and vice versa. Elevated levels of carbon dioxide seen today have made the ocean acidic.

“Our data show a significant increase in the boron isotope in the period of global cooling,” notes the paper. “The decline in the atmospheric carbon dioxide in our study may have contributed to global cooling and preconditioned the system for explosive ice sheet growth around 33.5 million years ago.”

According to the paper, the possible role of other greenhouse gases in the formation of the ice caps cannot be ruled out.

Though the atmospheric carbon dioxide subsequently increased to levels seen before the Eocene-Oligocene transition, it did not have a great impact on the Antarctic ice sheets.

According to the paper, the ice sheets withstood this increase in atmospheric carbon dioxide as the bright surface of the ice cap reflected the sunlight. “Once an ice cap is formed, melting at its margin is compensated by flow from the cold, high altitude interior,” the paper notes.

There was indeed a slight warming due to increase in carbon dioxide levels after the transition and this resulted in partial melting of the ice cap.