Voila! IISc’s catalyst uses sunlight to make water E. coli-free


The catalyst developed by Eswar (left) and Dr. Giridhar Madras can reduce the E. coli load from 10 million to zero in an hour.

Drinking water can now be made completely free of E. coli in about 30 minutes by exposing it to sunlight thanks to a catalyst developed by researchers at the Indian Institute of Science (IISc), Bangalore. The E. coli bacteria is responsible for most of the water-borne bacterial infections. The results were published on September 2, 2016 in the journal RSC Advances.

Conventional methods that rely on UV light to kill pathogenic bacteria are often expensive and need relatively more sophisticated process. Now, IISc researchers have made it possible to easily rid the water of E. coli bacteria by synthesising a zinc oxide photocatalyst that absorbs both UV and visible light to kill the bacteria. “We studied E. coli but the photocatalyst can potentially kill all harmful bacteria,” says Prof. Giridhar Madras from the Department of Chemical Engineering at IISc and the corresponding author of the paper.

“Our catalyst is unique as we have doped it with a metal and a non-metal (copper and nitrogen) so that it absorbs both visible and UV light,” says Prof. Madras. “Our catalyst is far efficient than conventional catalysts as it absorbs both wavelengths.”

The visible light comprises more than 40 per cent of the electromagnetic spectrum and UV light 4 per cent. The catalyst absorbs both spectrums and generates free radicals that kill the bacteria. Such is the efficiency of the catalyst in the presence of sunlight that it is able to reduce the E. coli load in water from 10 million to zero in an hour. “The rate of killing the bacteria increases with an increase in the intensity of sunlight.  We did out experiments between 11 am and 3 pm,” Prof. Madras says.


The zinc oxide catalyst was doped with copper and nitrogen, says Rimzhim Gupta, the first author of the paper.

But to be effective, the catalyst (in powder form) must be kept in suspension so there is a greater chance of the catalyst interacting with the bacteria and killing them. “We kept stirring the water to keep the catalyst in suspension, else it will settle at the bottom and its efficacy in killing the bacteria will be reduced. We are now trying to coat the catalyst on a glass plate and suspend the glass plate in water to kill the bacteria,” says Prof. Madras.

How it works

“Conventional catalysts like TiO2 are active only in the UV region as it has a wide band gap. In the case of ZnO we have reduced the band gap by by co-doping it with copper and nitrogen,” says Rimzhim Gupta from IISc and the first author of the paper. “The co-doped ZnO catalyst will be able to absorb even the longer wavelength of 400-700 nm which is the visible range of the spectrum.”

The band gap of a semiconductor determines the wavelength of light required to activate a photocatalyst and kill the bacteria by producing free radicals. In this case, copper and nitrogen have their unique roles in reducing the band gap. While nitrogen shifts the valence band, copper shifts the conduction band.

“When you shine light of appropriate wavelength on a photocatalyst the electrons and holes get separated. The electrons and holes can themselves produce free radicals that kill the bacteria. And free radicals like superoxide radicals and hydroxyl radicals too can kill E. coli. Superoxide radicals can be generated when electrons from the conduction band react with dissolved oxygen and holes in the valence band react with hydroxyl (OH) group and produce hydroxyl radicals,” says Neerugatti KrishnaRao Eswar from IISc and a coauthor of the paper. “We found superoxide and hydroxyl radicals were more effective in rupturing the cell wall of the bacteria and killing them.”

Published in The Hindu on October 2, 2016


2 thoughts on “Voila! IISc’s catalyst uses sunlight to make water E. coli-free

  1. This is an interesting work. However I would like to comment that E.coli is necessarily not the major or main cause of water-borne diseases, though this is one indicator organism the presence of which in water indicates that other pathogens may also be present in the water. There are several other bacteria and viruses present in the contaminated water which cause water-borne diseases. The presence of the parasite cysts which are normally resistant to conventional water-disinfectants are an another important cause. Therefore it would be extremely interesting to study the effectiveness of the new methodology against these pathogens also .

Comments are closed.