IISER Pune synthesises a photocatalyst to degrade organic pollutants

IISER Pune-Optimized

IISER Pune researchers have converted the highly unstable perovskite into a ultra-stable photocatalyst that can decompose toxic organic pollutants commonly present in water. The photocatalyst was synthesised by encapsulating nanocrystals of organic-inorganic perovskite inside a metal-organic framework (MOF).

Researchers at the Indian Institute of Science Education and Research (IISER) Pune have successfully converted the highly unstable perovskite into highly stable photocatalyst that is capable of decomposing toxic organic pollutants commonly present in water. The catalyst that becomes active when exposed to sunlight was synthesised by encapsulating nanocrystals of organic-inorganic perovskite inside a metal-organic framework (MOF).

The team led by Dr. Sujit K. Ghosh from the Department of Chemistry at IISER Pune utilised the hydrophobic nature of the MOF material to render greater chemical stability to perovskite nanocrystals that form inside the MOF cavities. The perovskite-MOF composites displayed “outstanding” stability when immersed inside water and alcoholic solvents for as long as 90 days.

The composites remained stable in water even when at boiling temperature for 20 days. While perovskite encapsulated by MOF showed 70% similar photoluminescence intensity before and after heat treatment at the end of 20 days, the photoluminescence intensity of naked perovskite decreased by 95% in just five hours of heat treatment. Likewise, the photoluminescence intensity of the composite remained almost intact even after being exposed to UV light for 20 days.

It is the hydrophobic nature of MOF that renders chemical, heat and photostability to perovskite.

The researchers found less than 1 ppb of lead metal leached from the composite at the end of 90 days of being exposed to different solvents, including water. “It is possible to replace lead metal with other nontoxic elements to make the composite more efficient and much safer to degrade organic pollutants,” says Dr. Ghosh. The results were published in the journal ACS Applied Nano Materials.

“This is the first time perovskite-based composite material as a photocatalyst has been used for the degradation of toxic organic pollutants such as antibiotics, dyes etc. It will be a cost-effective method to produce clean water,” says Dr. Ghosh.

The researchers tested the composite’s photocatalytic property to degrade organic pollutants in water. They tested three organic commonly seen pollutants — methyl orange, methyl red and nitorfurazone antibiotic.

“When the composite was exposed to sunlight it was able to degrade the organic pollutants,” says Samraj Mollick from IISER Pune and one of the first authors of the paper. “When exposed to sunlight, the perovskite nanocrystals release electrons into water thus producing hydroxyl radicals. The hydroxyl radicals are highly active species that decomposes the organic pollutants.”

However, rate of degradation of organic pollutants is not high compared with other standard materials. “Compared with other materials, perovskite is inexpensive and it is also possible to scale up its production easily,” says Tarak Nath Mandal, the other first author of the paper.

“This is only a proof-of-concept study. It is possible to increase the degradation rate by using different Perovskite and MOF materials,” says Dr. Ghosh.

The researchers were able to recycle the composite thrice and even on the third cycle the composite displayed over 90% degradation capacity.

Published in The Hindu on October 5, 2019

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.